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Bounded interpolations between lattices 

Michel Duneau and Christophe Ogueyt 
Centre de Physique ThIheorique, Ecole Polytechnique, F-91128 Palaiseau Ceder, France 

Received 21 June 1990 

Abstract. I t  is shown that, given two arbitrary lattices of equal density in the Euclidean 
space R", a bounded quasi-periadic and piecewise affine vector field li on R" (a so-called 
'modulation held) can be built so that the second lattice is the image of the first one under 
the map X + X - V ( X ) .  The proof relies on a factorization lemma for matrices with deter- 
minant equal to one. Each factor represents a shear-like transformation of R" which, in 
turn, is closely approximated by a periodic set of 'slips' in the lattice. 

1. Introduction and results 

In the Euclidean space E = R" of dimension n, a lattice L is a discrete subgroup of 
the translations of E that we shall always assume to have maximal dimension, i.e. L 
is isomorphic to Z". A cell or fundamental domain for L is a closed region of E the 

orbit do  not intersect). Our main result is the following. 

Theorem 1. Given two arbitrary lattices L, and L, of equal density in E, there is a 
map f of E onto itself, hereafter called a modulation, satisfying the following properties: 

L-orbit of which covers E without over!ap (the interior of !WQ differPn! ce!!r i n  the 

(i) f is one-to-one on E; 
(ii) f is piecewise affine; 
(iii) the field x +  u(.r)=x-f(x) for x in E is bounded and 'minimally' 

quasiperiodic, meaning that the dimension of its frequency module is at most n + 1; 
(iv) f maps La onto f( L,) = Lb. 

We call f the displacement or modulation map whereas U = I - f is referred to as the 
or~pa~sulcrr~  VI U W U U ~ ~ U V U  pw. NICL LLLC LLLCU~CU!, VVLU u c  prcc=wt>c ~ U I I C .  rne 
former is close to the identity I, the latter is uniformly bounded. It should he mentioned, 
however, that such mappings 1; satisfying all four conditions of theorem 1, are not 
unique. Suppose, for instance, that L,  = L,; then besides the trivial solution (f = I and 
U = 0), various equally valid solutions can be constructed by means of periodic permuta- 
tions of vertices. Nevertheless, for a given upper hound on the displacements, the set 
of solutions should he finite (condition (iii) is a severe restriction which rules out 
anarchic solutions). 

The proof of the theorem, in section 4, provides an explicit construction of a 
modulation f and specifies, among other things, the domains where f and U are linear, 

A:"-,.."----& ----A..,-.:-.. =^,_I A c L - -  .LA &I." L^.L ~-~ -: :-- -=-. m~ 

t Also at: UniversitIhe Paris-Sud. F-91405 Orsay, France. 
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Of course, there always exists a linear map 1 in GL(E) mapping La onto [(La) = Lb. 
For instance, such a map is completely determined by specifying two bases, one for 
L. and one for L,.  However, there is no uniform bound on  the corresponding displace- 
ment x- 1 ( x ) .  

We call the lransilion matrix from La to L,  the matrix T, with respect to a definite 
basis of L,, of any linear map 1 satisfying [ ( L a )  = L,. For instance if L,=AZ" and 
L, = BZ", where A and B are two regular n x n matrices, the corresponding transition 
matrix T from L8 to L, is T = A-'B. The ratio of the CO-volumes is idet Ti. So the 
densities of the lattices La and Lb are equal if, and only if, det T =  +1 for any transition 
matrix T. 

The main stage in proving the theorem is a decomposition of a suitably chosen 
transition matrix into a product of 'shear' matrices. A shear matrix M'*', where k is 
an integer, differs from the identity I only on the off-diagonal elements of the kth row 
( o r ( ( k - l ) m o d n ) + l  if k i s n o t i n j l ,  ..., n ) ) :  

1 0  ... ... 0 
M'*'= * . . .  * 1 * _ .  . * c k t h  row 0 0 . . .  . . .  0 1 

The factorization property is stated in a lemma: 

Lemma. If A is a real n x n matrix with determinant 1, then there are shear matrices 
(as described above) and a modular matrix U E  GL(n,  Z) such M"' MI"+" 

that 
,..., 

A U =  M'"" 'M(" ' .  , . Mill, 

Generically, i.e for almost all matrix A, one can take U = I in the lemma. 
Every shear matrix depends on n - 1  real parameters. It turns out that these 

parameters define a vector which is dual to a generator of the frequency module (that 
is the Z-module which carries the Fourier transform of the displacement field) so that 
the dimension of the frequency module equals the number of factors in the lemma, 
namely n + 1. The number of independent parameters is ( n  - l)(n + I ) ,  which is the 
'dimension' n'-1 of the set of all the lattices with equal, fixed, density. 

There are special non-trivial situations where the modulation field U in the theorem 
is periodic. These special cases are characterized by several equivalent conditions: 

(i) L, and L, admit a common (non-conventional) fundamental domain which 
actually is a parallelotope; 

(iij there is a transition matrix i: iu+ i, such that i-! = MP'!. , . M ! ! '  (with oniy 
n factors) where M"',  . . . , M'"' are shear matrices as in the lemma; 

(iii) there is a transition matrix T whose inverse has all its first principal minors 
equal to one. 

The present analysis originated in the study of displacive transitions in solid state 
physics. The most simple instances of displacive transforms occur in modulated crystals; 
theoreticai investigations in this fieid nave been invigorated by the discovery of 
quasicrystals (Shechtman e1 a l )  and more 'tricky' types of atomic orderings. Funda- 
mental questions like that of structural stability rely upon characterizing the nature, 
'directions' or 'amplitude' of the collective motions atoms can undergo. See Duneau 
and Oguey (1990) for a recent issue in this area. Similar problems arise in the structural 
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analysis of interfaces in poly-crystalline materials, as well as in the study of martensitic 
transformations (work in progress). 

The problem handled here also concerns the field of space quantization by regular 
lattices. Essentially, what we are looking for is a multidimensional extension of the 
'round' function. Taking the 'round' of every coordinate amounts to quantization of 
space by squares, but in the simplest instance of quantizing a rotated copy of the 
reference lattice, several nodes of the copy sometimes fall into the same square; so 
the one-to-one property does not hold. In the fourth section we explicitly build a 
bijective and bounded map between the two lattices. When applied to dimension n = 2, 
our construction provides a (reversible) algorithm to turn a bit map image by an 
arbitrary angle without changing the number of active dots. 

Another issue of our result deals with connectivity. Together with the set bf nodes 
one can consider the net of bonds, faces, etc, that is, the whole standard cell complex 
structure of the lattice. The map f actually maps the cell structure of La onto the cell 
structure of Lb. Locally, this is a direct consequence of a the fact that f coincides with 
a regular affine map. Moreover it will be clear from the construction of the map that, 
even if some lattice lines, planes, etc, undergo tearing 'during' the transition, all the 
torn pieces do  match again, though connected in a different order, after the transition. 

The article is organized as follows: basic notations and definitions are collected in 
section 2. The factorization lemma is proved in section 3, which is pure linear algebra. 
Section 4 provides an explicit construction of a map f and the related field U. This is 
achieved in several stages: applying the factorization lemma to the matrix T of SL(n, R), 
which relates the two lattices, we decompose the map into shear matrices. Every shear 
transform is at a bounded 'distance' from a periodic set of 'slips' (slips preserve the 
lattice). The difference 'shear-slip' provides a bounded displacement Q k ,  which is the 
basic step of <he construction (section 4.i). The first n stages k = i, . . . , n are then 
composed to form a periodic map @ sending the initial lattice onto an intermediate 
one (section 4.2). In many instances this lattice is the final one; in other words, n basic 
steps are enough and the algorithm stops here. But in generic situations, an additional 
shear-slip step k = n + 1 is required to get the target lattice and the overall mappingf 
(section 4.3). The quasiperiodicity of U is settled down there. The last section (section 
5 )  is devoted to the (non-generic) cases where n steps suffice: geometrically, the lattices 
correspond to two different packings of the same polyhedron. 

2. Notation and definitions 

Ihroug'hout the text, E is a n-dimensionai Euclidean space endowed with a scaiar 
product (., .) and an orthonormal basis (e, ,  . . . , e"); so E is isomorphic to R". 

The standard scalar product in R" is (x, y )  = E; xjyi for x, y in R", and the canonical 
basisofR" is (e  , . . ._,  e,,): ( e , ) , = S ,  for i , j g { l ,  ..., n).  

If ( R )  = ( a , ,  . . . , a,) and ( b )  = ( a , ,  . . . , b,) are two bases of E, the transformation 
matrix T: ( R )  + ( b )  is defined by the coefficients bj = 2, q j ~ ,  for i = 1,. . . , n. If x = 
Zj  X,Q[ = &yQj is a point in E with coordinates x = (x,,  . . . , x.) in ( a )  and y = 
(y, , . , . , y.) in ( b )  respectively, the change in coordinates is x, = Ej Tjy, or simply x = Ty. 

I 

GL(n, W) is the group of regular n x n matrices with coefficients in R. 
SL(n,W) is the subgroup of GL(n,R) of matrices with determinant 1. 
GL(n, Z) is the group of modular matrices. A modular matrix is an integer matrix 

which is invertible over Z. The determinant of such matrices is necessarily *l. 



464 M Duneau and C Oguey 

O( n )  is the group of orthogonal matrices. 
UT(n,W) is the group of upper triangular matrices with all diagonal entries 

LT(n, R) is the group of lower triangular matrices with diagonal elements equal 

Both UT( n, W) and LT( n, W) are subgroups of SL( n, W). 
For 1 s i, j 5 n, we let Eji be the matrix with all entries zero but the element on 

row i and co lumnj  which is equal to 1. The set of all the matrices E, with 1 s i ; j S  n 
is a basis for the vector space of n x n matrices. 

. . , E , ~ , _ , ,  
E,,,,,, . _.. , E,,,. The elements of Z'" are called 'row matrices' (of index k), with a 
hole in diagonal position; they can be written as  H = E,,, c,E,,~ with c, E W. 

A ( k ) = e x p ( Z ' k ' )  is the Abelian subgroup of SL(n,R) of shear matrices (of index 
k); these are matrices of the form exp(H) for H in Z""'. Since H 2 = 0  for any member 
of %", actually exp(E,.,c,E,,)= I + E , + , c , E ~ , = I I ~ + ~  (I+c,E,) .  

The inverse of a shear matrix is given by ( r +  H)- '  = I - H. 

equal to 1. 

to 1. 

For any k in (1,. . . , n ) ,  X"' is the linear subspace, generated by 

3. The factorization lemma 

The purpose of this section is to show that there are two bases-one for each lattice- 
such that the transition matrix can be decomposed into a product of shear matrices. 

Once a definite basis has been chosen in each lattice, the problem reduces to pure 
matrix algebra. We shall write the statements in terms of an arbitrary matrix A of 
SL(n, W). Changes ofbases in L, (resp Lb) correspond to post- (resp pre-) multiplication 
by elements of GL(n, H). 

A multi-index in (1, .  . . , n )  is an ordered subset a =(a,, . . . , a,) of { l , .  . . , n} .  If 
a and p are two multi-indices of length k in {1, . , , , n} ,  A[alp] denotes the k x k 
submatrix of A taken out from A by dropping all rows not in a and all columns not 
in p and reordering the rows and columns accordingly. 

The diagonal subdeterminants (the principal minors, for short) of a matrix A are 
the determinants of the form det{A[ala]) for any multi-index a in (1,. . . , n} .  

Lemma 3.1. Let i, j be two integers such that 1 s i # j s  n and c be a real number. 
The principal minors of the matrices A and A( 1 + cE,) 'are equal for all multi-indices 
a which contain i or do  not contain j :  

; E  a o r j E  a*det{A(l+ cE,)[alcu]}=det{A[ala]I.  

Proof: Let B = A(l + cEn) and let A.k and B.x denote the kth columns of A and B 
respectively. Then B,k = A,k for all k # j and 5, =A., + CA.;. Now, if j E  a the sub- 
matrices A[ala]  and B[a la ]  are equal and consequently the corresponding minors 
are also equal; i f j E  a and i ~ a ,  det{B[ala]}=det{A[ala]} since the contribution of 
CA.! vanishes by skew-symmetry. 0 

Lemma 3.2. Let A be an n x n matrix with determinant 1. There exist a modular matrix 
U and a shear matrix,M E A"' such that for all k = 1, .  . . , n 

det{MAU[(l,. . . , k ) ( ( l , .  . . , k)]} = 1. 
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Boo$ The matrix U is a permutation matrix which satisfies the following conditions: 

det{AU[(2 ,..., k, k+l) l ( l ,  ..., k)l}#O for all k =  1,. . . , n-1. 

Such a permutation always exits for regular matrices (see Gantmacher 1977, ch 11). 

to the rows of A' by Bl. = A:.+ZYa2 c,A:., and B(. = A:. for i = 2, .  . . , n. 

Then, by linearity with respect to the first line and skew-symmetry, we have 

Set A ' = A U  and B=MA'=(I+E;=,  c,E,,)A'. Notice that therows of B are related 

Let a;=det{A[(l  ,..., k)l(l ,..., k ) ] }  and bk=det{B[(l , . .  ., k)l( l ,  ..., k ) ] } .  

b,=a;  

bx =a;+ 1 c, det{A'[i,2,. . . , k)l(l , .  . ., k)l} 
,=2 

=a;+ 1 c,det{A'[i,Z ,..., k ) l ( l , . .  ., k)]} for k = l ,  ..., n - 1 .  
i =k+1  

For k = n, b,, = 1 with no restriction on the elements ck of M. 
Fork=n-1 ,wehavebn- ,=a;_ ,+c ,de t {A' [ (n ,2  ,..., n- l )1(1 ,  ..., n-l)]}.This 

last determinant does not vanish, by the choice of U. Then the value of c, can be 
chosen in order that b,-, = 1. Now assume that the elements c,, . . . , ckt2 have been 
determined such that b., ..., bk+, are equal to one. In the equation b x =  
a;+.Z:=,+, c;det{A'[(i,Z,. , ., k)l(l , ,  . . , k ) ] } =  1, the coefficient of ck+, is det{A'[(k+ 
1,2, .  . . , k)l(  I , .  . . , k)]} # 0, leading to a unique solution for ck+, . 

Proceeding this way down to c, provides the required elements of the matrix 
1" 

I".. 

Remark. Generically, i.e. for almost all matrices A, the above property holds with 
U = I. However, in general, different choices of U are possible and, consequently, 
different global solutions will be obtained. This is the source of the non-uniqueness 
of solutions. 

Lemma 3.3. Let B be a matrix of SL(n, R) such that det{B[(l,. . . , k) l ( l , .  . . , k ) ] ]  = 1 
for all k =  1,. . . , n. Then there exist shear matrices M"'E;tk''', . . . , M'"'EY'"' such 
that 

Proof: 

(i) Set c:"= BI, and M'"= exp(Z;=, c;"E,,). By hypothesis, E , ,  = 1 so that the 
matrix B"'= BM"'- l=  B(l  -Zcl"E,,) is of the form 

0 ... 0 (; . . .  ... ;). 
. . .  ... 

By lemma 3.1, B and B"' have equal diagonal minors for (Y of the type (1,. . . , k). In 
particular, BY; = I .  
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(ii) Set c,jz'= E$' for j = 1, 3,. . . , n and M'2'=exp(Xj1'2 cj*'€2j) .  Then E'2J = 
E"'M'2'-l . IS of the form 

1 0 - - - 0  ( y  : : 1 yi. 
_ _ _ _  

Again, E, E"' and E12' have equal principal minors so that BE'= 1. 
(iii) Proceeding this way u p  to n we get 

@"'= E'"-l'M'"'-l = EM'l'-l M'"'-l = I . . .  
which proves the lemma. U 

Remarks. 
(i) Lemma 3.3 essentially is Gauss's diagonalization (triangulation) procedure 

(Gantmacher 1977). 
(ii) Actually, the statement of lemma 3.3 holds with an 'if and only if'. Indeed, it 

is straightforward to deduce, from lemma 3.1, that a product B = M'"' . . . Mi" with 
M"'EA'J' for all j =  1,.  . . , n satisfies det{B[(l,. . . , k)l(l,. . . , k)])= 1. 

Proposition 3.4 (factorization lemma). Let A be a matrix with determinant equal to 1. 
There exist a modular matrix U and shear matrices M ' " E  A"', M"'E A'2', . . . , M'"'E 
A<fi' and M'"+"E&(I' such that 

* U =  M'"+l'M'"', , , M'", 

Proof: By lemma 3.2, there exist U in GL(n,Z) and M'""' in Ai" such that E =  
(M'"+l')-'AU has diagonal minors det{B[(l,. . . , k)l(l , .  . . , k)]] equal to 1 for all 
k = 1,.  . . , n. Then lemma 3.3 ensures the existence of the matrices MI*' for k = 1,. . . , n 
such that 

(M'"+l')-lAu= MI"' . . . M'". U 

Example. Let R be the matrix of a 7rf4 rotation in R2. The decomposition of R reads 

R = y  -:)=(A fil-l)( 1 
0 )( 1 Jz-1 ) 

J z l  - 1 f f i  1 0 

4. The piecewise affine modulation 

Given two lattices L, and L, of equal density, there is, according to proposition 3.4, 
a basis ( a )  of L, and a basis (b)  of Lb such that the inverse S of the transition matrix 
T: ( a ) +  (b)  is a product of shear matrices (S is itself a transition matrix, S: ( a ) +  ( a ) ) :  

_ _ . M"'. = M'"+llMl"'M'"-ll 
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Let us define a sequence of bases of E by the following chain of transitions: 

( a )  = (a'") - (a '")  - (a"') . , . (a'"-") - (a'"') - (a'""' ) = ( b ) .  
M < l , - I  M < 2 , - n  M < " ) - I  M < " * , , - l  

For any k in (1,. . . , n + 1) the matrix Mi*' is a shear matrix of the form I + H'". 
If h'*' denotes the non-zero row of Hi*', the transformation rule may be written as 

for i =  1,. . ., n (Miklr'),,a;k-ll- ik-ll-hikl i k - I 1  - a ,  , ax 
where hik' = 0. All the vectors a:"", . . . , a ( k - l l  except aik-')  undergo a shift parallel 

to aik-". 
For any point x of E the column vectors x('), xi", . . .,xi*', x("+" denote the 

coordinates of x with respect to the n f 2  basis (a")) ,  (a '") ,  . . . , (a'"+") respectively. 
The above changes of basis correspond to the following transformation rules: 

x'll= M'llX'O' 

X'"l= "I  '"-I' 

X ' " + l ) ,  M'"+Ilx'"' 

. . .  
M' x 

The overall coordinate transformation from the basis (a'") to the basis (ai"+") is thus 
provided by 

X'n+ll ,  M'"+"M'"',  , , M'llx'o'=~x'o',  

For every k = 1,. . , , n + 1, the transformation rule can be written in terms of the 
coefficients h'" as 

X ( * ) = X ~ k - l ) + ( h i k l ,  xi*-ll)ek~ 

We will also consider the intermediate lattices La = L'O', L'", . . . , L'"', L'""' = L b 

generated by the various bases. For any k in {0, . . . , n + I], a point x belongs to L'" 
if its coordinates x'" = (xi", . . . , x',"') with respect to the basis (a'*')  are integers. 

For generic values of the coefficients h!" two successive lattices L"-" and L'" 
have an intersection reduced to the one-dimensional lattice Her'. 
Example. If La,  Lb are two square lattices, at 45" to each other, the transition matrix 
is the one mentioned at the end of section 3. The related bases in the plane are depicted 
in figure 1. 

Figure 1. The bases of the four lattices L'", L"', L"', L'" involved in the algorithm for 
the example of two square lattices rotated by 45'. This example is generic as far as the 
number of baric steps is concerned ( n  + 1 = 3).  
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We next define a sequence of mappings q , ,  qZ, . . . , q*, qntl from E onto E which 
are close to the identity and which map respectively L'"'onto L"', L"'onto i'", . . . , L'"' 
onto L'""'. 

4.1. The mappings Q~ (periodic shear-slips) 

First we need a decomposition of the real numbers into integer and fractional parts: 
a = R n d ( a ) + r ( a )  where Rnd(a )=m if m - f s a < m + f  with m inZ.  

In this section we fix k in { I , .  . . , n + 1). 
The mapping qk is defined by q k ( x )  = y  where the point x = X i x ! . x - " a ! k - l J  and its 

image y =  P yjk'alk'  are related by the following transformation of the coordinates: 

y"' = XIk- ' '  + Rnd(( h'", XI '-"))e,, 

Using the above expression of x'" we find that 

,,,(XI = , (k)-(h!kJ,  x l k - l l  )ek + Rnd((h'", x'""))ek 

- - X I X I  - r ( (h 'k ' ,  x"-"))ek. 

Let us define the vector qk by ( q k , x ) = ( h ' k ' , x ' k - I ' )  for all x in E, x ' ~ " '  denoting the 
coordinates of x in the basis a' ' - ' ' .  The vector 4* is given by 4k =Pj h:k'a).k-''* in terms 
of the dual basis a:""' of a:'- ') .  Then q, has the equivalent definition 

Y = q k ( x ) = x -  w k ( x )  

where the displacement field is 

w k ( x )  = r ( (qk ,  1) )aY ' .  - 
1 ne fieid wk is a one-dimensionai fieid directed aiong a?' (remember that a?-!' = a?') 
whose amplitude is bounded by I l a ~ ' I l / Z .  Moreover, since ( q k ,  aP')  = h',X'=O, the field 
wk does not depend on the component of its argument along ap' (the 'longitudinal' 
component). 

Lemma 4.1. The map qk is one-to-one on R" and the inverse map is x+pP;'(x).= 
x + w , ( x j ,  Furthermore, p k  maps the iaitice ilk-!' onto ~ ( k ' :  q k ( ~ ! k - ! ' ) =  ick'. . 

Proox Let y = q k ( x )  = x - r ( ( q , ,  x))aLk'. Then ( q k , y )  = (qk .  x) since ( q k ,  a i k ' )  = O .  This 
implies x = y + r ( ( q k , y ) ) a L k '  which proves that x + x + w k ( x )  is an inverse for qk. From 
the first definition of q x ,  the components x"-" of x in (a ' * -" )  and the components 
yIk' of q k ( x )  in (a"' )  differ by integers: 

y l k l - x ' k - l l  - - ~ ~ d ( ( h I k 1  , x"-"))eh = Rnd((h'"', y"'))e, 

So the nodes of L'"" are mapped into nodes of L"' and reciprocally. U 

The translation symmetries of the displacement field form a larger set than stated 
so far. Let Qk be the 'grid', a countable union of hyperplanes, defined by 

Qk = { X E  E :  ( q t ,  X)E Z), 

Lemma 4.2. The displacement field is &-invariant: w , ( x +  t )  = w h ( x )  for any f belong- 
ing to Qk. This means that the map qk is 'covariant': q k ( x +  f )  = q k ( x )  + f for all f in O k .  
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Proof: I f f  belongs to Qk, (qk ,  x + t )  = ( q k ,  x)+z, where z is an integer; therefore, the 
fractional parts r ( (qk,x+t))  and r((qx,x)) are equal and w k ( x + f ) =  r ( ( q k , x + f ) ) d k ' =  

U wk(x ) .  Finally p k ( x  + 1 )  = x + t - wk(x + f )  = x+  f - w k ( x )  = p k ( x )  + 1. 

Remarks. 
(i) In a number of cases the field wk minimize the amplitude of the displacements 

necessary to move from L"-" to Lik'. More precisely the mapping 'pk corresponds to 
hopping from L"-" to the 'nearest' point of L'" provided the Euclidean metric is 
replaced (if necessary) by a metric such that 1111~~)/2[1< ~ \ 1 1 ~ ~ ' - a ~ ' / 2 ~ ~  for i f k .  

(ii) The mapping 'pk is piecewise linear. Indeed, in the strip ( x E E :  l ( q k , x ) l < f }  
bounded by two planes parallel to those of Q k ,  'pk coincides with the shear transforma- 
tion performing the change of basis ( a ( ' - ' ) ) +  ( a ' " ) .  

(iii) As noticed above, the intersection of L'*"' and L"' contains at least the 
one-dimensional lattice Zal"'. Consequently, the projection of these two lattices onto 
a hyper-plane perpendicular to a',"' give the same (n - 1)-dimensional lattice. This 
means that, through each node x of L'k" ' ,  there is a line parallel to U',""'= aikJ which 
contains the sublattice x+Zo',L-" of L"-" and a similar sublattice y + Z o i k '  of Lik' .  
The image ' p k ( x )  is simply the point of this second lattice which is the closest to x on 
the line (see figure 2 ) .  

Figure 2. Example of a basic modulation step. 

4.2. Thefirst n stages 

Consider now the mapping of E onto E defined by the composition 'p = ' p " ~ .  . . o'p20'ppI  

of the mappings 'px defined above. Let Q = n Qk denote the intersection of the first n 
grids Qk : 

Q = { x ~ E : ( q ~ , x ) ~ Z f o r k = l ,  . . . ,  n). 

Generically, i.e. when the vectors { q , ,  . . . , qm) are independent, this intersection is an 
n-dimensional lattice whose reciprocal basis is (4,. . . . , e . ) .  Otherwise, if the rank of 
{ q ,  , . , . , qn}  is r < n, Q is an r-dimensional periodic array of (n - r)-dimensional linear 
subspaces. 

The main properties of the mapping 'p are given in  the following lemma. 

Lemma 4.3. The mapping 'p = ' p " o . .  . o ' p 2 0 ' p ,  is one-to-one, close to the identity and 
the modulation field w = I - 'p is periodic with respect to Q. 

Proof: Since each 'pk is one-to-one and at bounded distance from I, the composition 
'p is obviously one-to-one and at bounded distance from I. 
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Assume that t belongs to Q. The covariance of p fol!ows from the covariance of 
each of the 'px (lemma 4.2): 

'9.". . . D ' p 2 O ( p , ( X +  t )  = p"0. . . opz('p,(x) + t )  =. . 

U 

Since a!! 9; have been defined as !oca!!y affine maps, sn is the g!oba! mapping 9. fix 
next two lemmas characterize the domains where 'p, and w, are affine. 

Lemma 4.4. Let C denote the open domain of E defined by the following conditions 

C = { X E  E :  ~(h'",x'''')l<f for k =  1,. . .  , n }  

where x"' denotes the coordinates of x in the basis (a"'). Then the restriction of p 
to C is linear. (If we set h(k'=E,  h:h'aju'* then C may be defined as C =  
{ X E  E: I(h'*',x)l<f for k = l ,  . . .  , n}). 

Roo$ The first transformation reads ' p l ( x ) = y  with 

y ( " =  x'"'+Rnd((h"', du'))e, 

where y"' denotes the coordinates of y in the basis (a" ) ) .  If xx belongs to C then we 
simply have y " ' = ~ ' ~ ' ,  which shows that 9, is linear on this domain. Assume that 
'pt+=-. . . o'p20p, is linear on C and is given by ' p k - l o .  . . ~ p z o p , ( x )  = y  with yIk-' '  = do', 
where y"-" denotes the coordinates of y in the basis (a"-"). Then the coordinate 
set z"' of z = pk(y) in the basis (Q '" )  is given by 

z 'k '=y'k~"+Rnd((.h 'k ' ,  y"-')))er .  

By hypothesis, (h"', y ' k " ' ) = ( h ' k ' ,  do') is in the interval I-:, f[; consequently, I(''= 
y"-"= do' and ' p x o . .  , o p 2 0 ' p I  is also linear on  C. Finally, the global mapping p = 

U 

Remark. It is clear, from this proof, that plc is the same as the restriction to C of the ,:"-"- ..."" .-"....f..*-:.." / " ( O ) \  ,,. I " ( " ) )  
Illlr',, ,.,',p LL' , ,1"1Y"""1~ \U , L" \U ,. 

p. 0 .  , . op20 'p, is linear on C and reads p(x) = y with y'"' =do'. 

Lemma 4.5. Assume the set of vectors { q , ,  . . . , q.} is of rank n and let Q and C be 
as defined above. Then C is a fundamental domain of Q. 

Roo$ The coordinates qx of qk with respect to a'''* (the dual basis of a'") are related 
to h"' by 

q k ~ ~ ~ l l l ~ ~ ~ l ~ ~ h ~ l l ~ l h l  

First we show that qk - hi" is a linear combination of h"' ,  . . . , hi'-".  Indeed, 
fM(h- l )hlk)= hlkl+hlk)  hlh-I1 , N ext, let j be an integer between 2 and k - 1 and suppose 
that 'Mi ' ' .  . . ' M ' k " ' h ' k ' -  h"'is a linear combination of h"',  . , , , h'"'; then the vector 

r a d - 1 )  ~ ~ ~ I k - l l ~ I h l -  , . ( X I =  l n n l i l  ! n ~ l h - l l h l k l ~ ~ ~ h I  

k - I  

1 "1 . . , i"1 ,I ,l ,", . . . 1 * 1  I ,  I ,  

+ ( ' ~ l j l . ,  , < ~ l k - l l h l k ) ) ,  hi,-" 
, - I  

is also a linear combination of h " ' ,  . . . , h"-" . By recurrence, this proves that the 
transition matrix U defined by qx = Ej U,xh"' is in UT(n, W). 
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On one hand, this implies that {h '" , .  . _ ,  h'"'] has the same rank as { q , , .  . _ ,  q"] ,  
which is maximal. Hence the set vectors which spans the polytope C-this set is dual 
to (h'", . . . , h'"')-is a basis of E. 

On the other hand, the lattice Q is generated by a basis dual to ( q l , .  . . , 4.). As 
shown in section 5, C is a fundamental domain of Q if the transition matrix U* 
relating the basis spanning C to the basis of Q is triangular with ones on the diagonal. 
But it is the case, here, because U* = 'U-' and the matrix U :  (h" ' ,  . . . , h'"')+ 
( q , ,  . . . ,  q,) is inUT(n,R).  U 

4.3. The overall mapping f 
Generically, Q = n,5ks. Qk is a lattice and C (lemma 4.4) is a non-primitive cell for 
Q (lemma 4.5). By lemma 4.3, Q is the invariance lattice of w = I - 9 and C is the 
linearity domain of w (lemma 4.4). 

We now perform the last step pn+, and prove statements (ii) and (iii) of theorem 
1. Under consideration are the overall mapping f defined by 

f ( x )  = ?n+, .9(x)= ' P n + l O ' P n O . .  . O ( D d X )  

u(x) = x - f ( x ) .  

and the related displacement field 

By proposition 3.4 the last mapping p.+, is associated to a shear matrix in A"'; 
therefore, in q m + l ( x )  = x -  w.+, (x ) ,  the modulation field is given by w.+, (x )=  
r [ (q , , , ,x ) ]a \"+".  Withf(x)=p,+,(x- w ( x ) ) = x - w ( x ) - w . + ~ ( x - w ( x ) ) ,  this implies 
that the overall modulation is u(x)= w ( x ) +  w,+, (x-  w ( x ) ) .  

Example. For the two square lattices at 454f maps the point x = x,a ,  +x2a2 of La onto 
the point y = y , b ,  + y,b, of L, as follows: 

y ,  = x I  + Rnd[(J2- l)xz)] + Rnd[(JZ - 1)(x2+ Rnd(-JZ(x,+ Rnd((J2 - l ) x 2 ) ) / 2 ) ) l  

y2=xZ+Rnd[-&(x,+Rnd((J2- 1 ) x 2 ) ) / 2 ] .  

In general, QI n , . . n Q. n = Q n Q.+, reduces to {O] so that no translation 
ieaves the vector fieid U invariant. Nevertheiess, notice that w is Q-periodic with 
reciprocal lattice Q*, and w.+, is periodic with Fourier spectrum in Q ' = Z q , + , ;  
therefore the field U, equal to w f  wnt lo(  I - w ) ,  is quasiperiodic with Fourier spectrum 
in Q* Q'. 

There is a simple and geometrical way to characterize quasiperiodicity which refers 
to higher dimension (Besicovich 1932, Oguey el a1 1988). We apply it here. 

Let our Euclidean space E (the 'physical space') be trivially imbedded in the 
Cartesian product E xR=R"+'. We shall identify points in E with their imbedding 
i(x) = (x, 0) = x. Set e,,, = ( 0 , l )  and let E' denote the one-dimensional subspace 
generated by e,,+,; then (e,, , , , , e , ,  e n + , )  is a basis of the higher dimensional space 
R"+';.E@E' and the scalar product in E is the restriction of the scalar product 
defined by (e r ,  e j )  = 8, for 1 S i ,  j S  n + 1. 

to 1-1 maps R"+l+W"t' by setting 
..,.4l the --.. ,. nf hh- n--dnssc crrrt;nn nrtpnA A!: :he maps qk, k =  :, , . . , I . ,  Y 1  n.... -1 .a.- u.1-y .+ V. ...* y .*..U " 0  1 .-.a-.. *n...l.Y 

ax([) = 9 d X )  + x' 

@(5)=vP(x)+x '  
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for all [=x+x'-x+x,,,e.+, in [W"+l .  Correspondingly, the displacement fields wand 
wk, k =  1,. . . , n, are extended to E-valued vector fields over R"+' as 

M Duneau and C Oguey 

W,([)= W,(x+x')=w,(x) 

W([) = W(x+x')  = w(x) 

In this manner, the field W is left invariant by any translation belonging to the bundle 
of lines QO E'. Similarly, in ( n  + 1 )  dimensions, the linearity domain for @ is now the 
cylinder CO E'. 

For the last step k = n + 1 the 'lift' to R"+' is different: set 

S,+,=q,+,+e.+,(=(q,+,, 1) in the product notation) 

w,+,(#) = r ( ( & + ,  , [))ai"+') 

@"+I([) = # -  W"+I(#). 

and 

Of course, when evaluated on E = (5: # = x}. that is {#: (6, en+l)  = O), the scalar product 
reduces to (e,,, , [) = (q.+, , x) so that en+, and W,,, (restricted to E )  coincide with 
the mappings P.+~ and w,+, defined previously. 

The grid 

0 ={[E R"+l: (e,,, ,[)EZ). 
intersects the physical space E on the grid Q,,+, . Defined in this way, @"+, and Wn+, 
are &invariant and affine in the slice 

I={#cR"+L . -?  2 < ( % + 1 , 5 ) < t )  

where 

qnt1 = h,+, + en+, . 
So extended to R"+' the overall displacement map and field 

F(#)=@n+~"D(O =@n+i(@(x)+x')  

V ( # ) = # -  F ( 5 )  
are now covariant (resp. invariant) under translations in the set 

A = (QO E') n 0 
which is a regular ( n  + 1)-dimensional lattice. If we have at our disposal a basis of Q 
(we can take the basis ( q * )  dual to (4) in E), a basis ( E )  for A is provided by 

&k=qZ-(q:, %+den+,  k =  1, . .  . , n 

E.+, =e ,+ ,  . 
In general, the 'slopes'-(q;, q.+,) of E in the basis ( E )  are irrational numbers; so E 
is not a lattice subspace for A. 

To conclude, as 'cut' by E, by which we mean a restriction to E, of the field V 
which is periodic in higher dimension (here, n + l ) ,  the vector field U is quasiperiodic 
with Fourier components in a ( n  + 1 ) - D  module (the projection of A* into E*). 

Moreover, the linearity domain of F and V is 

r = ( C O  E' )  n Z  

=([ER"+': I(?.+,, #) I<$ and I(h, ,#) l<f  for k = l ,  ... , n )  
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Figure 3. The three basic steps for the square lattices: (a) representation of the initial 
lattice (bold) and the panition of W' into domains where f is affine; [ h )  the image of ( a )  
by 'pI; ( e )  i s  the image d ( b )  by pz; (d) is the image of (c) by p,, that is the image of 
(a) by the modulation f. Each tile slays i n  the vicinity if its starting position. 

which is a non-primitive cell for A (proof analogous to lemma 4.4). Cutting this periodic 
tiling provides a tiling of E which is quasiperiodic, and non-periodic in general (see 
figure 3). The tiles in the cut are the domains where f and U are affine. 

5. Periodic tesselations 

In this section, a geometrical interpretation, in terms of lattices, is exhibited of the 
property, for a matrix, of having its first principal minors equal to one. 

Consider the cubic lattice L,  =Z" in [w" generated by (e,,  e,, . . . , en].  The primitive 
cell is the unit cube c( n) and the space W" can be viewed as a packing of non-overlapping 
cubes: 

L , + c ( n ) =  U ( c ( n ) + x ) .  
re L" 
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This packing is not unique. Indeed, if we let a, = e, +X:=, A,,e, where A,, ,  , . . , A , ,  
are real coefficients, the orbit of c ( n )  under the lattice generated by { a , ,  e>, ,  , . , en)  
provides another packing of W" by the same cubes. 

Similarly, within each slice of fixed integer coordinate along a ,  we can slip co- 
dimension two slices of cubes with respect to each other; this amounts to letting 
a2 = e,+X;=, A,,e;, A,,, . . . , A,, real, and disposing the cubes along the sheared lattice 
generated by {a l ,  a2,  e,,. . . , en}. In the a ,  and (1, directions, the cubes do  not match 
face to face as they did in the original Lo packing. This 'locks' those directions for 
further slipping of the cubes. 

Proceeding this way up  to n provides a new periodic tesselation of R" by cubes 
set along a lattice La generated by { a , ,  . . . , a,,) where 

a. = A..e. 
; = I  

'I' 

and the transition matrix A satisfies 

A.. = 1 

A.. Cl = 0 

for all i = 1,. . . , n 

if 1 S i < j G  n 

the second property being due to the 'locking' mechanism. In other words A belongs 
to the group LT(n, W). 

The order in which the slip directions have been chosen-first perpendicular to e,, 
next perpendicular to e, and e,, then to e,, e,, e,, e t c i s  of course arbitrary. If P is 
a permutation matrix and B is any lower triangular matrix then the orbit of c ( n )  by 
the lattice Lb generated by { b , ,  . . . , b.} with b; =E;=, ('PBP)jiej is an equally valid 
packing of W". 

What we have just shown is the following: if two lattices L, and Lb are related by 
a transition matrix T of the form 

T = A-"PBP 

where P is a permutation and A, B are lower triangular, then they share a common 
fundamental cell which is a parallelotope (the cube c ( n )  in the above settings). 

Actually, those two conditions-the factorization of the transition matrix and the 
common cell property-are equivalent. 

To show the converse of the above assertion, suppose that a lattice L is given such 
that L+ c ( n )  is a packing. Then we claim that there is a basis ( a , ,  . . . , a,) of L such 
that the transition matrix A from (e , ,  . . . , e,) to ( a , ,  . . . , a,) is triangular, up to 
permutations (analogous results are in (Haj6s 1941). The proof proceeds by recurrence 
on n. The claim is true for n = 1 since, in this case, the lattice is unique and the matrix 
A = 1. Next suppose it is true up to dimension n - 1. By the packing hypothesis, the 
origin 0 lies in the boundary of at least one other cube c ( n )  + I for some / E  L different 
from 0. We treat the generic case where 0 belongs to the interior of a facet of c ( n ) +  I .  
(the other cases may be handled by limits of generic cases). By permuting the basis 
vectors we may assume that this facet is normal to e,. The non-overlap of c ( n ) +  I and 
c ( n )  implies (e , , / )= -1  so that we may define a ,= - l=e ,+Z:= ,A; ,e ,  where A:, are 
real numbers, 2 s  is n. In the hyperplane H = {xl(e,, x) = 0) the facet contains a 
neighbourhood of the origin so that one is left with the problem of covering this 
neighbourhood with mutually disjoint facets of co-dimension one, that is by cubes 
c ( n  - 1). But it is not hard to see that the packing in a neighbourhood of a vertex 
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determines the whole periodic packing. Therefore, the plane H is a lattice plane of L. 
By the recurrence hypothesis, there is a basis (a2,. . . , a , )  of L n  H connected to 
( e 2 , .  . . , e,) by a matrix of LT(n - 1, R) and such that H is tiled by the set of facets 
c ( n  - 1)+ t with t in the lattice generated by {a,, . . . , a,,]. So if we add a ,  t o  that basis, 
we get a free set of vectors of L. By construction, the transition matrix (e, ,  . . . , e,) + 

( a l , .  . . , a.) is lower triangular; moreover the determinant is one (=volume of c ( n ) ) ,  
thus {a , ,  . . ., a.) is a basis of L. 

principal minors of the matrix. 

Proposition 5.1. Let T be a n  n x n matrix. The following are equivalent: 

To conc!u&, we re!& !he f.G!Qriz.!iQn con&ion !O . simple criterion on 

(i) T = A-' 'PBP where P is a permutation matrix and A, B E  LT(n, 08) 
(ii) det{T[(l, ..., k ) l ( l ,  ..., k) ]}= l  for all k = l , . _ . ,  n. 

ProoJ Let us first show (i)+(ii). Note that the diagonal minors of a triangular matrix 
B (in LT(n,R)) are all equal to one. This is also true for V='PBP since 
det{ V [ p ( u ) l p ( a ) ] }  = det{B[ala]] for any multi-index a in { l , ,  . . , n ] .  Now let k be 
an integer in { 1,. . . , n }  and set a = (1,. . . , k ) .  Write U = A-' and V as block matrices 

with U,= U[ala], VI= V[ala]  and suitable U,, U,, V,, V,, V,. Notice that U , E  
LT(k, R). Thus det{ UV[nla]) = det{ U, VI} = det{ U,} det{ V,} = 1 which proves that 
det{T[ala]] = 1. 

The converse proposition (ii)=+(i) is a straightforward consequence of the Gauss 
triangulation procedure (Gantmacher 1911, ch 11, section 4). Any square matrix can 
be represented as a product T =  UDV of a lower triangular matrix U E  LT(n, W),  a 
diagonal matrix 0, and an upper triangular matrix V;  The condition (ii) on the principal 
minors implies that D is the identity matrix. Moreover, if J is the orthogonal matrix 
representing the permutation (1, . . . , n) + ( n ,  n - 1, . . . , 1)-J provides an isomorphism 
between LT(n, R) and UT(n,R) through the conjugacy U +  J-'UJ-then the matrix 

U B = 'JVJ is lower triangular and T =  A-I'JBJ with A = U-' .  
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